Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation
نویسندگان
چکیده
We provide probabilistic representations of the solution some semilinear hyperbolic and high-order PDEs based on branching diffusions. These pave way for an approximation by standard Monte Carlo method, whose error estimate is controlled central limit theorem, thus partly bypassing curse dimensionality. illustrate numerical implications in context popular physics such as nonlinear Klein–Gordon equation, a simplified scalar version Yang–Mills fourth-order beam equation Gross–Pitaevskii PDE example Schrödinger equations.
منابع مشابه
Branching diffusion representation of semilinear PDEs and Monte Carlo approximation
We provide a representation result of parabolic semi-linear PD-Es, with polynomial nonlinearity, by branching diffusion processes. We extend the classical representation for KPP equations, introduced by Skorokhod [23], Watanabe [27] and McKean [18], by allowing for polynomial nonlinearity in the pair (u,Du), where u is the solution of the PDE with space gradient Du. Similar to the previous lite...
متن کاملMonte-Carlo Approximation Algorithms for Enumeration Problems
We develop polynomial time Monte-Carlo algorithms which produce good approximate solutions to enumeration problems for which it is known that the computation of the exact solution is very hard. We start by developing a Monte-Carlo approximation algorithm for the DNF counting problem, which is the problem of counting the number of satisfying truth assignments to a formula in disjunctive normal f...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems
In this paper we present a rigorous cost and error analysis of a multilevel estimator based on randomly shifted Quasi-Monte Carlo (QMC) lattice rules for lognormal diffusion problems. These problems are motivated by uncertainty quantification problems in subsurface flow. We extend the convergence analysis in [Graham et al., Numer. Math. 2014] to multilevel Quasi-Monte Carlo finite element discr...
متن کاملMonte Carlo algorithms and asymptotic problems in nonlinear filtering
This paper is an extension of [4], which dealt with a wide variety of approximations to optimal nonlinear filters over long time intervals, where pathwise average errors are of interest. Suppose that the underlying signal model is a diffusion or jump-diffusion X(·), or a discrete time Markov chain, with white noise corrupted observations. Then one can rarely construct optimal filters, and an ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Applied Probability
سال: 2021
ISSN: ['1050-5164', '2168-8737']
DOI: https://doi.org/10.1214/20-aap1649